Skip to content

Price settings

$$ \newcommand{\tsum}{\textstyle\sum} \newcommand{\extern}[1]{\mathrm{\mathbf{{#1}}}} \newcommand{\local}{\mathrm{local}} \newcommand{\roc}[1]{\overset{\scriptsize\Delta}{#1{}}} \newcommand{\ss}{\mathrm{ss}} \newcommand{\aa}{\mathrm{aa}} \newcommand{\bb}{\mathrm{bb}} \newcommand{\E}{\mathrm{E}} \newcommand{\ref}{{\mathrm{ref}}} \newcommand{\blog}{\mathbf{log}\ } \newcommand{\bmax}{\mathbf{max}\ } \newcommand{\bDelta}{\mathbf{\Delta}} \newcommand{\bPi}{\mathbf{\Pi}} \newcommand{\bU}{\mathbf{U}} \newcommand{\newl}{\\[8pt]} \newcommand{\betak}{\mathit{zk}} \newcommand{\betay}{\mathit{zy}} \newcommand{\gg}{\mathrm{gg}} \newcommand{\tsum}{\textstyle{\sum}} \newcommand{\xnf}{\mathit{nf}} \newcommand{\ratio}[2]{\Bigl[\textstyle{\frac{#1}{#2}}\Bigr]} \newcommand{\unc}{\mathrm{unc}} \notag $$ { .hide } ![[model/math.md]]

Downward sloping demand curve

\[ y_t = \extern{y}_t \, \left( \frac{py_t}{\extern{py}_t} \right)^{\left.-{\mu_{py}}\middle/\left(\mu_{py}-1\right)\right.} \, \]

where

  • \(\mu_{py}\) is the monopoly power of the representative producer in its own market, and \({\left.{\mu_{py}}\middle/\left(\mu_{py}-1\right)\right.}\) is the underlying elasticity of substitution of demand for the producer's output (which gives rise to the monopoly power)

Period profits

\[ \Pi_{y0,t} \equiv \left( py_t - py_{0,t}\right)\, y_t - \Xi_{py,t} \]

with the price adjustment costs given by $$ \Xi_{py,t} \equiv \tfrac{1}{2} \, \xi_{py} \, \extern{py}_t \, \extern{y_t}\, \bigl( \Delta \blog py_t - j_t \bigr)^2 $$

where \(j_t\) is a price indexation factor given by

\[ j \equiv \zeta_{py}\ \blog \roc{\extern{py}}_{t-1} + (1-\zeta_{py}) \,\blog \roc{py}_\ss \]

Maximization problem

\[ \max\nolimits_{\{y_t, py_t\}} \E_t \sum_t \left( \beta\, \betay_t\right)^t \, vh_t \, \Pi_{y0,t} \]

where

  • \(\betay_t\) is an additional discount factor to compensate for the uncertainty of cash flows generated by real economic activity

Optimal price setting with no adjustment cost (steady state) is a markup over the marginal cost

\[ p_{y,t} = \mu_{py} \, p_{y0,t} \]

Optimal price setting with adjustment cost is a Phillips curve

\[ p_{y,t} \, \Bigl\{ 1 + \left(\mu_{py}-1\right) \, \xi_{py} \Bigl[ \left(\bDelta \blog p_{y,t} - j_t \right) - \beta \, \betay_t \left(\bDelta \blog p_{y,t+1} - j_{t+1} \right) \Bigr] \Bigr\} = \mu_{py}\, p_{y0,t} \]