Demography
Overview
The demography module determines the following population quantities; all of them are considered to be simple exogenous processes not affected by the rest of the model:
-
Global population trend
-
Area's total population
-
Area's working age population
-
Area's labor force (labor participation)
Endogenously within the model, we then model per-worker labor supply (e.g. per-worker hours).
Total Population
$$ \newcommand{\tsum}{\textstyle\sum} \newcommand{\extern}[1]{\mathrm{\mathbf{{#1}}}} \newcommand{\local}{\mathrm{local}} \newcommand{\roc}[1]{\overset{\scriptsize\Delta}{#1{}}} \newcommand{\ss}{\mathrm{ss}} \newcommand{\aa}{\mathrm{aa}} \newcommand{\bb}{\mathrm{bb}} \newcommand{\E}{\mathrm{E}} \newcommand{\ref}{{\mathrm{ref}}} \newcommand{\blog}{\mathbf{log}\ } \newcommand{\bmax}{\mathbf{max}\ } \newcommand{\bDelta}{\mathbf{\Delta}} \newcommand{\bPi}{\mathbf{\Pi}} \newcommand{\bU}{\mathbf{U}} \newcommand{\newl}{\\[8pt]} \newcommand{\betak}{\mathit{zk}} \newcommand{\betay}{\mathit{zy}} \newcommand{\gg}{\mathrm{gg}} \newcommand{\tsum}{\textstyle{\sum}} \newcommand{\xnf}{\mathit{nf}} \newcommand{\ratio}[2]{\Bigl[\textstyle{\frac{#1}{#2}}\Bigr]} \newcommand{\unc}{\mathrm{unc}} \notag $$
![[math]]
Global population trend, \(nn_t\), is a unit root process common to all areas. The level of the global population trend does not correspond to any particular demographic indicator; rather, we can think of \(nn\) as a driving force for population growth
Area's total population
Labor Market Population
Area's working age population
Area's labor force (participation)
GEES Demography module
Declare quantities
!variables
"Total population" nn
"Total population, Y/Y" roc_nn
"Area specific component in total population" nr
"Working age population" nw
"Labor force" nf
!log-variables !all-but
!parameters(:demography :steady)
"S/S Population, Relative to global population component !! $\mathit{nr}_\ss$" ss_nr
"S/S Share of working age population in total population !! $\tratio{\mathit{nw}}{\mathit{nn}}_\ss$" ss_nw_to_nn
"S/S Labor participation rate !! $\tratio{\mathit{nf}}{\mathit{nw}}_\ss$" ss_nf_to_nw
!parameters(:demography :dynamic)
"A/R Total population relative to global population component !! $\rho_\mathit{nr}$" rho_nr
"A/R Share of working age population in total population !! $\rho_\mathit{nw}$" rho_nw
"A/R Labor participation rate !! $\rho_\mathit{nf}$" rho_nf
!shocks
"Shock to relative population component" shk_nr
"Shock to share of working age population" shk_nw_to_nn
"Shock to labor participation rate" shk_nf_to_nw
Define equations
!equations
"Total population relative to global population component"
log(nr) = rho_nr * log(nr{-1}) + (1-rho_nr) * log(ss_nr) + shk_nr ...
!! nr = ss_nr;
"Total population"
nn = nr * gg_nt;
"Total population, Y/Y"
roc_nn = nn / nn{-1} ...
!! roc_nn = gg_ss_roc_nt;
"Share of working age population"
nw/nn = ...
+ rho_nw * nw{-1}/nn{-1} ...
+ (1-rho_nw) * ss_nw_to_nn ...
+ shk_nw_to_nn ...
!! nw = ss_nw_to_nn * nn;
"Labor participation rate"
nf/nw = ...
+ rho_nf * nf{-1}/nw{-1} ...
+ (1-rho_nf) * ss_nf_to_nw ...
+ shk_nf_to_nw ...
!! nf = ss_nf_to_nw * nw;
Postprocessing equations outside model
!postprocessor(:demography)
nw_to_nn = nw / nn;
nf_to_nw = nf / nw;