Baseline calibration of global parameters
$$
\newcommand{\ss}{\mathrm{ss}}
\newcommand{\gg}{\mathrm{gg}}
\newcommand{\tratio}[2]{\left[{#1}\,\middle/{#2}\right]}
\newcommand{\roc}[1]{\overset{\scriptsize\Delta}{#1{}}}
$$
Global trends: Steady-state parameters
Name |
Math |
Value |
Description |
gg_ss_roc_a |
\(\roc{a}^\gg_\ss\) |
1.02 |
S/S Global productivity trend, Rate of change |
gg_ss_roc_nt |
\(\roc{\mathit{nt}}^\gg_\ss\) |
1.01 |
S/S Global population trend, Rate of change |
gg_ss_zk |
\(\mathit{zk}^\gg_\ss\) |
0.9 |
S/S Global uncertainty discount factor on capital |
gg_ss_zy |
\(\mathit{zy}^\gg_\ss\) |
1 |
S/S Global uncertainty discount factor on production cash flows |
gg_ss_dmm |
\(\mathit{dmm}^\gg_\ss\) |
1 |
S/S Global disruption to non-commodity trade |
gg_nu |
\(\nu^\gg\) |
-0.0505425 |
Global intercept in Euler equation |
Global trends: Dynamic parameters
Name |
Math |
Value |
Description |
gg_rho_a |
\(\rho_a^\gg\) |
0.5 |
A/R in global productivity trend |
gg_rho_nt |
\(\rho_\mathit{nt}^\gg\) |
0.9 |
A/R in global population trend |
gg_rho_zk |
\(\rho_\mathit{zk}^\gg\) |
0.9 |
A/R in uncertainty discount factor on capital |
gg_rho_zy |
\(\rho_\mathit{zy}^\gg\) |
0.9 |
A/R in uncertainty discount factor on production cash flows |
gg_rho_dmm |
\(\rho_\mathit{dmm}^\gg\) |
0.5 |
A/R Global disruption to non-commodity trade |
Global commodity supply: Dynamic parameters
Name |
Math |
Value |
Description |
gg_iota_1 |
\(\iota_1^\gg\) |
0.2 |
Excess demand elasticity of commodity prices |
gg_rho_qq |
\(\rho_\mathit{qq}^\gg\) |
0.8 |
A/R Long-run trend in commodity supply |